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A linearized, input-output model matching problem for single-input, multi-
output nonlinear systems is formulated in the frequency domain, and solved
using dynamic output feedback. The objective is to obtain a desired transfer

function for the family of closed-loop linearized systems.

Introduction

~ In recent years there has been rapid developmem of the closely-related pseudo-

hnear;zauon»{&#]’and extended lmeanzatxou [1,5] approachs for design of nonlinear control

laws for nonlinear systems. - In th:s papenwe adopt a frequency-domain viewpoint, and use
results in {5} to formulate and solve a linearized model matching problem for single-input,
multi-output nonlinear systems. The objective is to construct a nonlinear, dynamic, output

feedback control law so that the resulting closed-loop system, when linearized about its family

of constant operating points, has a linearization family with transfer function that matches

Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command,
USAF, under Grant Number AFOSR-87-0101.
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N exactly a given parameterized transfer function. If the given transfer function is parameter ‘
independent, then this problem can be viewed as a type of input-output pseudo-linearization
problem. & - . .

We consider a single-input, multi-output nonlinear system with input « (¢) € R and out- EE
put y(¢t) € RP, defined for ¢ > 0. The system is assumed to have a constant operating point "
family {[u(a), y(a)), a €T} where the parameter set I'C R is an open neighborhood of a s
fixed oy € R. That is, for a constant input u (t) = u(ay), where oy €T is fixed, there exists an )
initial condition for the nonlinear system such that the output is the constant, y (¢) = y(oy). '
Typically, the constant operating point family is parameterized by constant values of the input, 3
one of the outputs, or one of the underlying states of the system. E;'f

We will adopt a local viewpoint throughout this paper and implicitly allow shrinking the :E
size of T in order to economically state results. (When particular examples are considered, it ‘:i
often is possible to solve the problem in a nonlocal fashion.) To avoid counting the order of :
continuous differentiability, we will assume that all functions andtheir derivatives that appear §
in the sequel are continuous. .§

Corresponding to the operating point family {[u(a), y(a)}, €T}, let the px1 }3"
parameterized transfer function of the linearization family for the given nonlinear system be "2‘

$

Tue) = ook (1

where d (s, a) and each entry of N (s, a) are polynomials in s with coefficients that are real Eii
functions of &, and d (s, ) is monic. We assume that for each a&T (1) is irreducible. Also §§
we assume d (0, a) 0, and N(0, a) #0 for each a€. Thus T,(s) has no fixed poles at :::
s = 0, and not all entries of T,(s) have a zero ats = 0. Finally we assume that “.
o

& () = T, 2@, aer @ )

It should be noted that that if d (0, &) # 0 for each a €T, then (2) is a sufficient condition for “
T4(s) with {[u(a), y(a)], ®€T} to be a linearization family for a nonlinear system. If the :::
linearized state equation for the nonlinear system has no eigenvalues at zero for each a €T, :::

then (2) also is necessary. {5] Y

) :‘»? u’\: i~‘ M "‘5"'?1;1'“‘\%‘,‘&.?‘.y'} s .".*'0 ,’q .‘\\‘\ n’l", ,,‘, -7~ ,‘ r.h:z"o .‘l n!l w.‘,a A\. - l.i“ h'. -‘ m!'l\ [N (a z'l,u.t‘l.l i) _u.\,u'ﬁ‘.- I.!.\ Wb J-'




Linearized Model Matching

The linearized model matching problem ixxvolv&f computing a nonlinear dynamic output
feedback control law, with new input w (¢) € R, such that when the closed-loop nonlinear sys-
tem is linearized about its constant operating point family, the resulting linearization family
has a given parameterized transfer function. The given parameterized transfer function
(model) for the linearized closed-loop system is written in a form similar to (1),

- N"(s a '
T26) = ) Q)

where the superscript m stands for model and d™(s, a) is monic. We assume that for a€T
d™(0, «) #0 and N™(0, a) #0, so that Ty (s) has no pole at s =0 and not all entries of
T (s, @) have a zero ats = 0. Also we assume that a family w(a) of constant opera'ting point
values for the new input is given such that '

L (@) =TT O, aeT ; @

so that T7 (s) with {[w(a), y(a)], « €T} is a linearization family.

The linearized model matching problem will be solved as follows. First we compute, if
possible, a parameterized scalar linear precompensator TG (s) such that

To(s)Ta(s) = T2 (5) ()

This is illustrated in Figure 1 where the subscript § indicates deviations from constant-
operating-point values. Then we implement the precompensator Tg(s) using a parameterized
linear dynamic output feedback configuration. Finally, a nonlinear, dynamic, output feedback
law is computed whose family of linearizations is precisely the parameterized, linear, dynamic,

output feedback law.

From (5) it is clear that N (s, a) and N™(s, a) must satisfy
b(s, a)N(s, a) =a(s, a)N"(s,a)) a€Tl (6)

for a(s, a) and b (s, a) which are scalar polynomials in s with coefficients that are real func-

tions of a. If (6) is satisfied, the parameterized linear precompensator will have the form

Ti(s) = b(s, ®)d(s, a) a€Tl (7)

a(s, a)d™(s, a) '

Lo AN

-~

-

T S TSGR

Pt

s -l I
o e :

e

o Ayt [

T e

N

-

o . ;
»3 2
LRt i K- - o

L)
-~

e

S ,,".f‘..-_é:f; £Q

Lt

-

RS

-
=2

ol o ol AN
e



-4. t

For Tg(s) to be proper we must have, for eacha €l 3
6d(s, @) -5;N(s, a) <6d™(s, @) -6N™ (s, @), i=1,...,p 8)

where § denotes polynomial degree and'& denotes polynomial degree of the i* row of a poly-
nomial column vector. For example, if the plant and the model are such that
& (s, o) = 6d™(s, a), then (8) implies that there should be no more finite zeros in the model
Ta (5) than in the linearized plant T,(s).

e

gk Al
-

The precompensator T, (s) is to be implemented by a parameterized, linear, dynamic,

o
PRty

o

output feedback law. Although different implementations are available, a parameterized ver- ;

sion of the implementation given in [2, pp 516-522] will be developed. This is presented in A
some detail because of additional hypothesis required due to parameterization by c. ; fl

Step 1: Assuming that §a (s, a) in (6) is constant for a €T, compute least degree polynomials :ff

ng(s, a) anddy(s, ) such that :“
]

. W

ns, ) Tals) | bGa oy ©) X

dis, @) d(s,a@) a(s, a)d™(s, a) i

3

Step 2: Letting 5d(s, ) = fand 6d (s, o) = n, we set ':;:

o

I‘Q

de(s, @) = v(s, a)ds, o), RS, a) = v (s, a)ngs, o) (10) f:“

where v(s, a) = 1 if f>n. If f <n, then let v(s, a) be an arbitrary, monic polynomial in s ;

with coefficients that are real functions of a such that at each a€T, &v (s, @) = n - f and :1
v (s, a) has only negative real part roots. Then we can write ":
ij(s’ ) = a(s) , a€rl ,..

dis, ) 4G, 0) !

i

_ — M,

where 5d(s, a) 8f>n ;::"
Step 3: Assume that the observability index of a minimal parameterized linear realization of .

T4(s), that is, the row index of T(s) is a constant v for a€T. Letd (s, @) be a monic poly- .:
()

nomial in s with coefficients that are real functions of a such that at each a€T, :;';

[}

&d (s, @) r>v-1, ny(s, @)/d(s, a) is proper and d.(s, @) has only negative real part roots. :‘

Set w(s,a)=1if f>n +r,and if f <n +r, let w(s, a) be a monic polynomial in s with
coefficients that are real functions of a such that at each a€T, éw(s, @) =n + r-f<r, and ’

RCE T
T
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w (s, a) has only negative real part roots.

Step 4: If §[w(s, a)d(s, a))<n +r, set 4(s, @) = 1. Otherwise use polynomial division to

write
dfs, &) = q1(s, a)d(s, a) + ry(s, a), &ry(s, @) < &d(s, o)
w(s, a)q1(s, a) = d.(s, a)q (s, a) + ri(s, @), 8ry(s, a) < & (s, a) (11)

In this division process it can happen that q4(s, o) will have coefficients that are infinite at
particular values of «€T. A similar singularity issue can arise for g (s, ), and also the possi-
ble occurrence of roots ats = 0 in g (s, a) complicates the subsequent calculation of nonlinear
compensators. It is possible that these difficulties can be avoided by judicious choice of
d.(s, a). A solution in any case is to increase r = &d.(s, a) to avoid the divx'sion"s in (11),
though this does result in increased compensator dimension. (Note that choosing d.(s, a),
v(s, a) and w(s, a) to be independent of o will simplify matters.)

Step 5: Let
k(s, @) = w(s, ajags, @) (12)
and determine polynomials / (s, ) and M (s, a) from
w(s, a)df(s, a) -d(s, a) (s, a)d (s, )
= [(s, a)d (s, a) + M(s, a)N(s, a) (13)
Step 6: Define the parameterized linear compensators in Figure 2 according to

CL(s) = ﬁ—‘j?)- (14)

1
q(s, a)

Ci(s) = (15)

I(s, M@, a
C(s) = Z((s_,—o% ——(—Jdc o (16)

It is straightforward to verify that the parameterized transfer function for the system in
Figure 2 is Tg (s). It should be noted that this parameterized linear system may not be

minimal in the sense of linear systems. However, the above implementation of Tg(s) is such

AN
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that the system will be internally stable so long as Ty (s) is stable.

The final task is to compute a nonlinear, dynax:nic, output feedback control law whose
linearization family is precisely the parameterized, linear control law shown in Figure 2. Of
course, the closed-loop, parameterized linear system in Figure 2 described by Tg (s) together
with {[w(c), y(e)], €T} is a linearization family, and T,(s) with {[u(a), y(a)], €T} is a
linearization family. Now we define constant operating point values according to

r(o) = a{c:w)—‘}}(a)aa, e(0) = Q{C;(o) 28 (o)
du
s |20
W) = [0 g7 4o . an
® do

so that each parameterized linear compensator with its associated constant operating point
family forms a linearization family. Using (2) and (4) it is not difficult to verify
e(a) = r(a) - v(a) explicitly, that is, these definitions are consistent. The construction of non-
linear compensators from these compensator linearization families is discussed in [5], and will
be illustrated in an example.

In order to summarize the foregoing development, we state the following theorem.
Theorem: Suppose we are given a model (3) and a nonlinear system with linearization family
(1) such that, for a€Tl, where I is a sufficiently small neighborhood of ay, d(0, @) #0,
N, a) #0,d™(0, @) #0, N™"(0, a) #0, and (2), (4) hold. Then there is a dynamic output
feedback control law that solves the linearized model matching problem if fora€T

i)  Tg(s) is irreducible;

ii) the row index, v, of T,(s) is constant;

iiiy N(s, a)b(s, a) = a(s, a)N™(s, a) for scalar polynomials a (s, a) and b(s, a),
where 8a (5, a) is constant;

iv) &d(s,a)-§N(s, a)<8d™(s, a)-6N™(s, @), i = 1,..., p.

Example: The dynamics of an inverted pendulum on a cart are described by

Xy 73
5| | gsin(xy) - amixdsin(x, )cos(x,) - acos(x; u

4l /3 - amicos?(x,)




v s s
oo o

- o e v e A
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y=x

where x, is the angle of the pendulum from the vertical, u is the force applied to the cart,
a = 1/(m + M), m is the pendulum mass, M is the cart mass, 2/ is the pendulum length and g
is the acceleration due to gravity. The constant operating point family is easily parameterized
by the first component of the state:

4 @ A, X X
u(a)=atan(a), x(a):[o], y@) =a; aer—(-i’i)’%=0

The transfer function of the linearized system is

To(s )= 's—zc_'%aga_) '
where
b(a) = g c(a) = - acos(a)

[41 /3 - amicos®(a)]cos(a)  41/3 -amicos*(a)

Note that T,(s) is irreducible and has neither pole nor zero at s = 0 for any a€T since
41 /3 > aml, and also that (2) is satisfied. Let the model be specified by

1

T2 (6) = T

w(a) = a
Obviously (4) is satisfied, and the precompensator is given by
2 -
TS (s) = _i__b_(ELz
cla)s + 1)

To implement Tg(s) by the feedback configuration in Figure 2, we apply the algorithm 2s fol-
fows.
Step 1: Let n(s, a) = 1,dg(s, a) = c(a)(s + 1)%.
Step 2: Since 8di(s, a) = f =2, 8d(s,a) =n = 2, letv(s, a) = 1, and set _d—,(s, a) = d(s, a),
LS, &) = ngs, a), with f = f = 2.
Step 3: Since v=n=2,let r=1, and d.(s,a)=s + 1. Then f<n +r, and we let

w(s,a) =5 + 1.

Step 4: Since §[w (s, a)z,(s, a)l =n +rletq(s, a) = 1.
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]
| o "
| Step 5: Letk(s, a) = w(s, a)?,(s, a) =5 + 1, and solve (12) to obtain ':E
i)
i
I(s,a) =[c(a)-1} + 3c(a)-1 . ::
M(s,a) =[b(a) + 3]s +3b(a) +1 ' N
Step 6: The parameterized linear compensators in Figure 2 are easily computed to be
1 2 - o
Cals) =C5(s) = 1 . ::
.i
3y o | fe(@-1]s +3c(@)-1  Jb(a) + 3]s +3b(a) +1 "3
Ca (S ) = 2
s+1 . s+1 ¥
. \]
. A
From (17), r(c) = w(a), e(a) = u(a), and v(a) = a- (g/a)tan(a). Thus the nonlinear com- N
’ J
pensators associated with CL(s) and C%(s) can be taken as unity gains. A parameterized :i*‘
linear realization for the compensator C3(s) is ' L
| 2 ; Bt
T =-15 + [2c(a) 2(b(a)-1)][y6], r(a) = -2 ::
Us g *
vs =15+ [c(a)-l b(a)+3][y5], ¥(e) = a- £tan(o)
s.;‘
Finally, it is easy to check that a corresponding nonlinear compensator is described by [5] N \
ooy 4 285i00) - 2aucos(y) .‘
4l /3 - amlcos*(y) :
v=r-u+3y+ gsin(y) - aucos(y) 3:
4l /3 - amicos*(y) X
|
.'.
Remark: Linearized model matching can be generalized to the case where T,(s) and T7 (s) :\\
have poles at s = 0 that are invariant with respect to a €. The main changes to be made 4
involve a more complicated characterization of the associated constant operating points for 0y
]
the linearization families. For example, suppose T,(s) is such that that B
. X]
d(s, a) = (™1 + dy(@™2 + -+ + dys(e))s o
n N
84d(s, a)s, di(a)€R, d,i(a) #0 for aeT (18) .
Al
Then we must have u(a) = 0 for a€T. To characterize the associated constant operating W
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point output, write T,(s) as the concatenation of

Tols) = N ' (19)
d(s, a)(s + 1)

with output y and input &, and

s+1

Ta(s) = =5

(20)

with input u and output &. It is easy to see that T,(s) with [u(a), y(a)] is a linearization family
if and only if u(c) can be found such that f‘a(s.) with [u(a), ()], and f'a(s) with [u(a), u(a)]
both are linearization families. Since T ofS) with u(a) = 0 and any u(e) is a linearization fam-
ily, To(s) with {[u(a) = 0, y(a)), « €T} is a linearization family if u(e) can be found such that

d _ 5 mdu _ :
2i(a,) = T,(0)5 (@), for acT (21)

Conclusions

The linearized model matching problem is a natural extension of eigenvalue placement
problems formulated in terms of extended linearization [1] or pseudo-compensation [4] in that
numerator gains and zero locations of the linearized closed-loop system are explicitly
addressed. This additional capability can be useful when acceptable performance cannot be
achieved by assignment of linearized-system eigenvalues alone.

If a parameterized compensator can be found such that the model can be taken to be
independent of ¢, as in the Example, then the linearized model matching problem leads to
what might be called input-output pseudolinearization. However this bears only loose resem-
blance to the original notion of pseudo-linearization in that variable changes are not involved,
full state feedback is not used, and the dimension and eigenvalue locations of the closed-loop
linearization family are not specified a priori

One disadvantage of the frequency-domain approach used here is that extension of the
results to the multi-input case, though clear in broad outline, is difficult in detail. For exam-
ple, suppose the parameterized linear compensators are specified in terms of parameterized
transfer function matrices. In the course of constructing the nonlinear compensators, compu-

tation of parameterized linear realizations of the transfer function descriptions can lead to

singularities with respect to the parameter vector « that are not easily shown to be removable.
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Also, the so-called integrability conditions for the existence of a nonlinear control law

corresponding to a parameterized linear control law are nontrivial in the multi-input case.

L}
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, Figure 1. Linearized plant with precompensator. ‘
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o Figure 2. Feedback implementation of precompensator.
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